High hydrostatic pressure can have profound effects on the stability of biomacromolecules. The magnitude and direction (stabilizing or destabilizing) of this effect is defined by the volume changes in the system, ΔV. Positive volume changes will stabilize the starting native state, whereas negative volume changes will lead to the stabilization of the final unfolded state.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC), one of the most aggressive types of cancer, is characterized by aberrant activity of oncogenic KRAS. A nuclease-hypersensitive GC-rich region in KRAS promoter can fold into a four-stranded DNA secondary structure called G-quadruplex (G4), known to regulate KRAS expression. However, the factors that regulate stable G4 formation in the genome and KRAS expression in PDAC are largely unknown.
View Article and Find Full Text PDFKissing loop interactions (KLIs) are a common motif that is critical in retroviral dimerization, viroid replication, mRNA, and riboswitches. In addition, KLIs are currently used in a variety of biotechnology applications, such as in aptamer sensors, RNA scaffolds and to stabilize vaccines for therapeutics. Here we describe the thermodynamics of a basic intramolecular DNA capable of engaging in a KLI, consisting of two hairpins connected by a flexible linker.
View Article and Find Full Text PDFMembers of the uracil-DNA glycosylase (UDG) enzyme family recognize and bind uracil, sequestering it within the binding site pocket and catalyzing the cleavage of the base from the deoxyribose, leaving an abasic site. The recognition and binding are passive and rely on innate dynamic motions of DNA wherein base pairs undergo thermally induced breakage and conformational fluctuations. Once the uracil breaks from its base pair, it can be recognized and bound by the enzyme, which then alters its conformation for sequestration and catalysis.
View Article and Find Full Text PDFTriplex formation occurs via interaction of a third strand with the major groove of double-stranded nucleic acid, through Hoogsteen hydrogen bonding. In this work, we use a combination of temperature-dependent UV spectroscopy and differential scanning calorimetry to determine complete thermodynamic profiles for the unfolding of polyadenylic acid (poly(rA))·polyuridylic acid (poly(rU)) (duplex) and poly(rA)·2poly(rU) (triplex). Our thermodynamic results are in good agreement with the much earlier work of Krakauer and Sturtevant using only UV melting techniques.
View Article and Find Full Text PDF