Climate changes and human-related activities are identified as major factors responsible for the increasing distribution and abundance of vectors worldwide and, consequently, of vector-borne diseases (VBDs). Farmed animals, during grazing or in establishments with the absence of biosecurity measures, can easily be exposed to wildlife showing high-risk of contagion of several infectious diseases, including VBDs. Furthermore, livestock represents an interface between wildlife and humans, and thus, promoting the transmission pathway of VBDs.
View Article and Find Full Text PDFIntroduction: Feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV) are well-known retroviruses causing important infections in domestic cats worldwide. The goal of this study was to determine the prevalence of FeLV and FIV infections in cat living indoor and outdoor in southern Italy.
Methods: The survey was conducted on 1322 stray and owned cats from the regions of Campania, Basilicata, and Calabria.
Indirect transmission of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been investigated but it is still not completely understood. The present study aimed to compare the persistence and viability of the lineage B.1 and omicron BA.
View Article and Find Full Text PDFFrom 2019 to 2021, a retrospective molecular study was conducted in the Campania region (southern Italy) to determine the prevalence of viral diseases in domestic cats. A total of 328 dead animals were analyzed by Real-Time PCR for the presence of feline panleukopenia virus (FPV), feline leukemia virus (FeLV), feline enteric coronavirus (FCoV), rotavirus (RVA), feline herpesvirus type 1 (FHV-1), and feline calicivirus (FCV). The possible presence of SARS-CoV-2 was also investigated by Real-Time PCR.
View Article and Find Full Text PDF