Major alterations of choroidal cell polarity and protein expression were previously shown to be induced in rats by long-term adaptation to space flight (14 days aboard a space shuttle) or anti-orthostatic suspension (14 and 28 days) performed by tilting rats head-down (i.e. using a ground-based model known to simulate several effects of weightlessness).
View Article and Find Full Text PDFJ Gravit Physiol
October 1999
Effects of actual and simulated weightlessness on choroidal guanylate cyclase activity were evaluated by assaying the production of cyclic guanosine monophosphate (cGMP), a second messenger involved in mechanisms regulating the secretion of cerebrospinal fluid (CSF) in choroid plexus. Cyclic cGMP was measured, using radio-immunoassay, in choroidal extracts of hindlimb-suspended rats (HLS rats), adapted to an anti-orthostatic restraint for 30 min., or for 3, 9 or 14 days and after a 17-day spaceflight (Life and Microgravity SpaceLab experiment; LMS).
View Article and Find Full Text PDFNIH-R1 and R2 missions, conducted by NASA, allowed us to study the effects of the microgravitational environment 1) on cardiac ANP in pregnant rats, spaceflown for 11 days and dissected after a 2-day readaptation to Earth's gravity, after natural delivery, and 2) on maturation of cardiac ANP system in rat fetuses developed for 11 days in space and dissected on the day of landing, 2 days before birth. Immunocytochemical and electron microscopy analyses showed a typical formation of ANP-containing granules in atrial myocytes, in both dams and fetuses. Using competitive RT-PCR and radioimmunoassays, we observed that, after 2 days of readaptation to Earth's gravity, cardiac ANP biosynthesis of rat dams flown in space was increased by about twice, when compared to Synchronous and Vivarium Control rats.
View Article and Find Full Text PDFDiabetes mellitus is a major risk factor for atherosclerosis. In atherosclerotic lesions, arterial smooth muscle cells (SMC) change from a contractile to a synthetic phenotype characterized by active proliferation. A similar phenotype modulation occurs in vitro when isolated arterial SMC are grown in culture and is characterized by both changes in cell morphology and a typical switch in actin isoform expression.
View Article and Find Full Text PDFJ Appl Physiol (1985)
January 1998
To determine when choroidal structures were restored after readaptation to Earth gravity or orthostatic position, fine structure and protein distribution were studied in rat choroid plexus dissected either 6 h [Space Life Sciences-2 (SLS-2) experiments] or 2 days [National Institutes of Health-Rodent 1 (NIH-R1) experiments] after a spaceflight, or 6 h after head-down tilt (HDT) experiments. Apical alterations were noted in choroidal cells from SLS-2 and HDT animals, confirming that weightlessness impaired choroidal structures and functions. However, the presence of small apical microvilli and kinocilia and the absence of vesicle accumulations showed that the apical organization began to be restored rapidly after landing.
View Article and Find Full Text PDF