The increased potential for tritium releases from either nuclear reactors or from new facilities raises questions about the appropriateness of the current ICRP and WHO recommendations for tritium exposures to human populations. To study the potential toxicity of tritium as a function of dose, including at a regulatory level, mice were chronically exposed to tritium in drinking water at one of three concentrations, 10 kBq.l, 1 MBq.
View Article and Find Full Text PDFTo examine the effects of low-dose exposure to uranium with a systems biology approach, a multiscale high-throughput multi-omics analysis was applied with a protocol for chronic exposure to the rat kidney. Male and female rats were contaminated for nine months through their drinking water with a nontoxic solution of uranyl nitrate. A multiscale approach enabled clinical monitoring associated with metabolomic and transcriptomic (mRNA and microRNA) analyses.
View Article and Find Full Text PDFPurpose: A protocol of chronic exposure to low dose of uranium was established in order to distinguish the sexual differences and the developmental process that are critical windows for epigenetic effects over generations.
Methods: Both male and female rats were contaminated through their drinking water with a non-toxic solution of uranyl nitrate for 9 months. The exposed generation (F0) and the following two generations (F1 and F2) were examined.
Localization of uranium within cells is mandatory for the comprehension of its cellular mechanism of toxicity. Secondary Ion Mass Spectrometry (SIMS) has recently shown its interest to detect and localize uranium at very low levels within the cells. This technique requires a specific sample preparation similar to the one used for Transmission Electronic Microscopy, achieved by implementing different chemical treatments to preserve as much as possible the living configuration uranium distribution into the observed sample.
View Article and Find Full Text PDFA central question in radiation protection research is whether low-dose and low-dose-rate (LDR) exposures to ionizing radiation play a role in progression of cardiovascular disease. The response of endothelial cells to different LDR exposures may help estimate risk of cardiovascular disease by providing the biological mechanism involved. We investigated the effect of chronic LDR radiation on functional and molecular responses of human aorta endothelial cells (HAoECs).
View Article and Find Full Text PDF