The complex and continuously evolving features of the tumor microenvironment, varying between tumor histotypes, are characterized by the presence of host cells and tumor cells embedded in a milieu shaped by hypoxia and low pH, resulting from the frequent imbalance between vascularity and tumor cell proliferation. These microenvironmental metabolic stressors play a crucial role in remodeling host cells and tumor cells, contributing to the stimulation of cancer cell heterogeneity, clonal evolution, and multidrug resistance, ultimately leading to progression and metastasis. The extracellular vesicles (EVs), membrane-enclosed structures released into the extracellular milieu by tumor/host cells, are now recognized as critical drivers in the complex intercellular communication between tumor cells and the local cellular components in a hypoxic/acidic microenvironment.
View Article and Find Full Text PDFGastric cancer (GC) is the fifth most frequent malignancy and the fourth leading cause of worldwide cancer-related death. Despite the usage of multimodal perioperative chemotherapy (pCT), GC progressively gains chemoresistance, thereby, the identification of suitable targets to overcome drug resistance is fundamental. Amongst the potential biomarkers, carbonic anhydrase IX (CAIX) - associated with a poor prognosis of several solid cancers - has gained the most attention.
View Article and Find Full Text PDFBlood vessels are the most important way for cancer cells to survive and diffuse in the body, metastasizing distant organs. During the process of tumor expansion, the neoplastic mass progressively induces modifications in the microenvironment due to its uncontrolled growth, generating a hypoxic and low pH milieu with high fluid pressure and low nutrients concentration. In such a particular condition, reactive oxygen species play a fundamental role, enhancing tumor proliferation and migration, inducing a glycolytic phenotype and promoting angiogenesis.
View Article and Find Full Text PDF