Publications by authors named "L Maggiorella"

The MRE11-RAD50-NBS1 complex plays a central role in response to DNA double-strand breaks. Here, we identify a patient with bone marrow failure and developmental defects caused by biallelic RAD50 mutations. One of the mutations creates a null allele, whereas the other (RAD50) leads to the loss of a single residue in the heptad repeats within the RAD50 coiled-coil domain.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) are highly invasive and angiogenic malignancies with a median survival time from diagnosis of <15 months. Previous work has revealed robust overexpression of fibronectin (FN) mRNA in GBM, although immunohistochemical staining of FN in these tumors is typically associated with the angiogenic vasculature. Here we sought to examine the expression of tumor cell FN and address its possible involvement in the invasive phenotype of GBM.

View Article and Find Full Text PDF

Aim: There is considerable interest in approaches that could improve the therapeutic window of radiotherapy. In this study, hafnium oxide nanoparticles were designed that concentrate in tumor cells to achieve intracellular high-energy dose deposit.

Materials & Methods: Conventional methods were used, implemented in different ways, to explore interactions of these high-atomic-number nanoparticles and ionizing radiation with biological systems.

View Article and Find Full Text PDF

Angiogenesis is considered as an essential process for tumour development and invasion. Previously, we demonstrated that cyclin-dependent kinase inhibition by roscovitine induces a radiosensitization and a synergistic antitumoral effect in human carcinoma but its effect on the microenvironment and tumour angiogenesis remains unknown. Here, we investigated the effect of the combination roscovitine and ionizing radiation (IR) on normal cells in vitro and on tumour angiogenesis in MDA-MB 231 tumour xenografts.

View Article and Find Full Text PDF

Pancreatic and colorectal carcinomas frequently express oncogenic/mutant K-Ras that contributes to both tumorigenesis and clinically observed resistance to radiation treatment. We have previously shown that farnesyltransferase inhibitors (FTI) radiosensitize many pancreatic and colorectal cancer cell lines that express oncogenic K-ras at doses that inhibit the prenylation and activation of H-Ras but not K-Ras. In the present study, we have examined the mechanism of FTI-mediated radiosensitization in cell lines that express oncogenic K-Ras and found that wild-type H-Ras is a contributor to radiation survival in tumor cells that express oncogenic K-Ras.

View Article and Find Full Text PDF