Being an exemplary model of open quantum system, the spin-boson model is widely employed in theoretical and experimental studies. Beyond the weak coupling limit, the spin-boson dynamics can be described by a time-nonlocal generalized master equation with a memory kernel accounting for the dissipative effects induced by the bosonic environment. When the spin is in addition modulated by an external time-periodic electromagnetic field, the interplay between dissipation and forcing provides a spectrum of nontrivial asymptotic states, especially so in the regime of nonlinear response.
View Article and Find Full Text PDFThe original PDF and HTML versions of this Article omitted the ORCID ID of the authors L. Magazzù and P. Forn-Díaz.
View Article and Find Full Text PDFQuantum two-level systems interacting with the surroundings are ubiquitous in nature. The interaction suppresses quantum coherence and forces the system towards a steady state. Such dissipative processes are captured by the paradigmatic spin-boson model, describing a two-state particle, the "spin", interacting with an environment formed by harmonic oscillators.
View Article and Find Full Text PDFQuantum resonant activation is investigated for the archetype setup of an externally driven two-state (spin-boson) system subjected to strong dissipation by means of both analytical and extensive numerical calculations. The phenomenon of resonant activation emerges in the presence of either randomly fluctuating or deterministic periodically varying driving fields. Addressing the incoherent regime, a characteristic minimum emerges in the mean first passage time to reach an absorbing neighboring state whenever the intrinsic time scale of the modulation matches the characteristic time scale of the system dynamics.
View Article and Find Full Text PDF