Publications by authors named "L M van der Heijdt"

The insolubility of metal sulphides is believed to limit the bioavailability of trace metals in sulphidic sediments. However, if non-equilibrium conditions are important, metals may be more available than simple thermodynamic calculations suggest. To investigate the possible dynamic supply of Cu, Ni and Zn in a sulphidic freshwater sediment, they were measured, along with iron, manganese and sulphide, by the technique of diffusive gradients in thin-films (DGT).

View Article and Find Full Text PDF

The technique of DGT (Diffusive Gradients in Thin Films) was further developed to allow simultaneous measurement of sulfide and trace metals at the same location in sediment. The new combined DGT probe consisted of a layer of gel impregnated with AgI, overlain by (1) a layer of gel containing Chelex, (2) a layer of gel and (3) a filter membrane. Diffusion of sulfide was controlled by layers (1) to (3), while diffusion of metals was controlled by layers (2) and (3).

View Article and Find Full Text PDF

Mobilisation of contaminants is an important issue in environmental risk assessment of dredging projects. This study has aimed at identifying the effects of dredging on mobilisation of trace metals (Zn, Cu, Cd and Pb). The intensities and time scales of trace metal mobilisation were investigated during an experimental dredging project conducted under field conditions.

View Article and Find Full Text PDF

Fe K-edge X-ray absorption spectra of the non-heme iron constituent of lipoxygenase-1 from soybeans were obtained. The spectrum of 2.5 mM Fe(II) lipoxygenase, mixed with 1.

View Article and Find Full Text PDF

X-ray absorption spectra at the Fe K-edge of the non-heme iron site in Fe(II) as well as Fe(III) soybean lipoxygenase-1, in frozen solution or lyophilized, are presented; the latter spectra were obtained by incubation of the Fe(II) enzyme with its product hydroperoxide. An edge shift of about 2-3 eV to higher energy occurs upon oxidation of the Fe(II) enzyme to the Fe(III) species, corresponding to the valence change. The extended X-ray absorption fine structure shows clear differences in active-site structure as a result of this conversion.

View Article and Find Full Text PDF