Bromobenzoquinones and 2,4,6-tribromophenol belong to disinfection or chlorination by-products than can be formed in bromide-rich waters during chlorination or chloramination. Due to their high toxicities, sensitive and cost-effective analytical methods are necessary to detect and quantify them in various environmental matrices. A determination method of 2,5-dibromo-1,4-benzoquinone, 2,6-dibromo-3,5-dimethyl-1,4-benzoquinone, 2,6-dibromo-3-chloro-5-methyl-1,4-benzoquinone, 2,3,5,6-tetrabromo-1,4-benzoquinone and, 2,4,6-tribromophenol was developed using solid-phase extraction and electron capture detector-gas chromatography separation and detection (SPE-GC-ECD).
View Article and Find Full Text PDFDespite increasing metals and metalloids (MM) human-driven soil contamination, how it simultaneously alters biodiversity and ecosystem functioning remains unknown. We used a wide gradient of a 170-year-old MM soil multi-contamination in Mediterranean scrublands to assess the effects of soil multi-contamination on multiple plant biodiversity facets, microbial communities and ecosystem multifunctionality (EMF). We found an overall positive effect of plant biodiversity on EMF mediated by microbial communities, and allowing offsetting the negative impacts of MM soil multi-contamination, especially on soil water holding capacity and nitrogen content.
View Article and Find Full Text PDFDisinfecting swimming pool water is essential for preventing waterborne diseases. An unforeseen consequence of treating water with disinfectants is the formation of disinfection by-products (DPBs) that can cause harmful effects to health through the interactions between the added disinfectant and organic matter in the water. The present work focuses on the chlorine reactivity with particles released by bathers.
View Article and Find Full Text PDFSoil contamination pattern due to industrial activities often leads to high concentrations of potentially toxic elements (PTE) decreasing with depth. This spatial heterogeneity of the soil contamination may have significant consequences on the soil properties and soil living communities. We evaluated the effects of both surface and solum soil contamination heterogeneity on Coronilla juncea L.
View Article and Find Full Text PDFBromoform (CHBr) belongs to very-short-lived substances (VSLSs), which are important precursors of reactive bromine species (BrOx) contributing to tropospheric and stratospheric chemistry. To date, most models calculating bromine product emissions to the atmosphere only consider the natural production of CHBr from marine organisms such as macroalgae and phytoplankton. However, CHBr has many other anthropogenic sources (coastal industrial sites, desalination and wastewater plants, ballast waters, and seawater toilets) that may drastically increase the amounts emitted in the atmosphere.
View Article and Find Full Text PDF