Novel species of fungi described in this study include those from various countries as follows: , in leaves of , among deep leaf litter, from uredinium of on , on well-rotted twigs and litter in mixed wet sclerophyll and subtropical rainforest. , on twigs of , on bark, in savannas with shrubs and trees. , on leaves of , (incl.
View Article and Find Full Text PDFFine root endophyte mycorrhizal fungi in the Endogonales (Mucoromycota arbuscular mycorrhizal fungi, M-AMF) are now recognized as at least as important globally as Glomeromycota AMF (G-AMF), yet little is known about the environmental factors which influence M-AMF diversity and colonization, partly because they typically only co-colonize plants with G-AMF. Wild populations of Lycopodiella inundata predominantly form mycorrhizas with M-AMF and therefore allow focussed study of M-AMF environmental drivers. Using microscopic examination and DNA sequencing we measured M-AMF colonization and diversity over three consecutive seasons and modelled interactions between these response variables and environmental data.
View Article and Find Full Text PDFMost trees form symbioses with ectomycorrhizal fungi (EMF) which influence access to growth-limiting soil resources. Mesocosm experiments repeatedly show that EMF species differentially affect plant development, yet whether these effects ripple up to influence the growth of entire forests remains unknown. Here we tested the effects of EMF composition and functional genes relative to variation in well-known drivers of tree growth by combining paired molecular EMF surveys with high-resolution forest inventory data across 15 European countries.
View Article and Find Full Text PDFFour new species are described. . grows in dry pine heaths on acidic, sandy soil.
View Article and Find Full Text PDFThe resilience of forests is compromised by human-induced environmental influences pushing them towards tipping points and resulting in major shifts in ecosystem state that might be difficult to reverse, are difficult to predict and manage, and can have vast ecological, economic and social consequences. The literature on tipping points has grown rapidly, but almost exclusively based on aquatic and aboveground systems. So far little effort has been made to make links to soil systems, where change is not as drastically apparent, timescales may differ and recovery may be slower.
View Article and Find Full Text PDF