Publications by authors named "L M Studer"

Prime editing (PE) allows for precise genome editing in human pluripotent stem cells (hPSCs), such as introducing single nucleotide modifications, small insertions or deletions at a specific genomic locus. Here, we systematically compare a panel of prime editing conditions in hPSCs and generate a potent prime editor, "PE-Plus", through co-inhibition of mismatch repair and p53-mediated cellular stress responses. We further establish an inducible prime editing platform in hPSCs by incorporating the PE-Plus into a safe-harbor locus and demonstrated temporal control of precise editing in both hPSCs and differentiated cells.

View Article and Find Full Text PDF

There is an urgent need for agents that promote health and regeneration of cells and tissues, specifically to treat diseases of the aging nervous system. Age-associated nervous system degeneration and various diseases are driven by many different biochemical stresses, often making it difficult to target any one disease cause. Our laboratory has previously identified DNA aptamers with apparent regenerative properties in murine models of multiple sclerosis by selecting aptamers that bind oligodendrocyte membrane preparations.

View Article and Find Full Text PDF

As the field of neural organoids and assembloids rapidly expands, there is an emergent need for guidance and advice on designing, conducting and reporting experiments to increase the reproducibility and utility of these models. Here, our consortium- representing specialized laboratories from around the world- presents a framework for the experimental process that ranges from ensuring the quality and integrity of human pluripotent stem cells to characterizing and manipulating neural cells in vitro, and from transplantation techniques to considerations for modeling human development, evolution, and disease. As with all scientific endeavors, we advocate for rigorous experimental designs tailored to explicit scientific questions, and transparent methodologies and data sharing, to provide useful knowledge for both current research practices and for developing regulatory standards.

View Article and Find Full Text PDF

Disruption of parvalbumin positive (PVALB+) cortical interneurons is implicated in the pathogenesis of schizophrenia. However, how these defects emerge during brain development remains poorly understood. The protracted maturation of these cells during postnatal life has made their derivation from human pluripotent stem cells (hPSCs) extremely difficult, precluding hPSC-based disease modeling of their role in neuropsychiatric disease.

View Article and Find Full Text PDF

The peripheral nervous system (PNS) is essential for proper body function. A high percentage of the world's population suffers from nerve degeneration or peripheral nerve damage. Despite this, there are major gaps in the knowledge of human PNS development and degeneration; therefore, there are no available treatments.

View Article and Find Full Text PDF