This study explores the feasibility of employing eXplainable Artificial Intelligence (XAI) methodologies for the analysis of cough patterns in respiratory diseases. A cohort of 20 adult patients, all presenting persistent cough as a symptom of respiratory disease, was monitored for 24 hours using a smartphone. The audio signals underwent frequency domain transformation to yield 1-second spectrograms, subsequently processed by a CNN to detect cough events.
View Article and Find Full Text PDFWe present an automatic road incident detector characterised by a low computational complexity for easy implementation in affordable devices, automatic adaptability to changes in scenery and road conditions, and automatic detection of the most common incidents (vehicles with abnormal speed, pedestrians or objects falling on the road, vehicles stopped on the shoulder, and detection of kamikaze vehicles). To achieve these goals, different tasks have been addressed: lane segmentation, identification of traffic directions, and elimination of unnecessary objects in the foreground. The proposed system has been tested on a collection of videos recorded in real scenarios with real traffic, including areas with different lighting.
View Article and Find Full Text PDFUnlabelled: Cough is a protective reflex conveying information on the state of the respiratory system. Cough assessment has been limited so far to subjective measurement tools or uncomfortable (i.e.
View Article and Find Full Text PDFHealth Monitoring apps for smartphones have the potential to improve quality of life and decrease the cost of health services. However, they have failed to live up to expectation in the context of respiratory disease. This is in part due to poor objective measurements of symptoms such as cough.
View Article and Find Full Text PDFObjective: To design a Computer-aided diagnosis (CAD) system using an optimized methodology over the P3b wave in order to objectively and accurately discriminate between healthy controls (HC) and schizophrenic subjects (SZ).
Methods: We train, test, analyze, and compare various machine learning classification approaches optimized in terms of the correct classification rate (CCR), the degenerated Youden's index (DYI) and the area under the receiver operating curve (AUC). CAD system comprises five stages: electroencephalography (EEG) preprocessing, feature extraction, seven electrode groupings, discriminant feature selection, and binary classification.