Publications by authors named "L M Pismen"

We explore a novel mechanism of interactions between nematic order and flow including odd and rotational viscosities, and investigate activity-induced instabilities in the framework of this model. We show how these modes of viscous dissipation can be incorporated in the Ericksen-Leslie formalism, but it does not eliminate deficiencies of the approach based on Onsager's reciprocal relations that lead to spurious instabilities. The suggested way of deriving nematodynamic equations, based on a specific mechanism applicable to rigid rods, is not universal, but it avoids referring to Onsager's relations and avoids spurious instabilities in the absence of an active inputs.

View Article and Find Full Text PDF

We consider a non-reciprocally coupled two-field Cahn-Hilliard system that has been shown to allow for oscillatory behaviour and suppression of coarsening. After introducing the model, we first review the linear stability of steady uniform states and show that all instability thresholds are identical to the ones for a corresponding two-species reaction-diffusion system. Next, we consider a specific interaction of linear modes-a 'Hopf-Turing' resonance-and derive the corresponding amplitude equations using a weakly nonlinear approach.

View Article and Find Full Text PDF

Specific features of two-dimensional nematodynamics give rise to shortfalls of the tensor representation of the nematic order parameter commonly used in computations, especially in theory of active matter. The alternative representation in terms of the vector order parameter follows with small adjustments the classical director-based theory, but is applicable to 2D problems where both nematic alignment and deviation from the isotropic state are variable. Stability analysis of nematic alignment and flow is used as a testing ground.

View Article and Find Full Text PDF

Collective cell polarization and alignment play important roles in tissue morphogenesis, wound healing and cancer metastasis. How cells sense the direction and position in these processes, however, has not been fully understood. Here we construct a theoretical model based on describing cell layer as a nemato-elastic medium, by which the cell polarization, cell alignment and cell active contraction are explicitly expressed as functions of components of the nematic order parameter.

View Article and Find Full Text PDF