The first steps of glucose metabolism are carried out by members of the families of GLUTs (glucose transporters) and HKs (hexokinases). Previous experiments using the inhibitor of glucose transport, CB (cytochalasin B), revealed that compartmentalization of GLUTs and HKs is a major factor in the control of glucose uptake in L6 myotubes [Whitesell, Ardehali, Printz, Beechem, Knobel, Piston, Granner, Van Der Meer, Perriott and May (2003) Biochem. J.
View Article and Find Full Text PDFIn muscle, insulin enhances influx of glucose and its conversion to glucose 6-phosphate (G6P) by hexokinase (HK). While effects of insulin on glucose transport have been demonstrated, its effect on the activity of HK of cells has not. In L6 myotubes treated for 24 h with insulin there was increased expression of the HK isoform, HKII, and increased glucose phosphorylation without a concomitant increase in glucose transport, indirectly suggesting that phosphorylation of glucose was a target of insulin action [Osawa, Printz, Whitesell and Granner (1995) Diabetes 44, 1426-1432].
View Article and Find Full Text PDFAlpha-lipoic acid, which becomes a powerful antioxidant in its reduced form, has been suggested as a dietary supplement to treat diseases associated with excessive oxidant stress. Because the vascular endothelium is dysfunctional in many of these conditions, we studied the uptake, reduction, and antioxidant effects of alpha-lipoic acid in cultured human endothelial cells (EA.hy926).
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
July 2001
To use primary cultures of human skeletal muscle cells to establish defects in glucose metabolism that underlie clinical insulin resistance, it is necessary to define the rate-determining steps in glucose metabolism and to improve the insulin response attained in previous studies. We modified experimental conditions to achieve an insulin effect on 3-O-methylglucose transport that was more than twofold over basal. Glucose phosphorylation by hexokinase limits glucose metabolism in these cells, because the apparent Michaelis-Menten constant of coupled glucose transport and phosphorylation is intermediate between that of transport and that of the hexokinase and because rates of 2-deoxyglucose uptake and phosphorylation are less than those of glucose.
View Article and Find Full Text PDF