Publications by authors named "L M Higgins"

The effects of ten test chemicals towards thyroid sodium-iodide symporter (NIS), thyroid peroxidase (TPO), and deiodinases (DIOs) type I, II, and III were evaluated in in vitro rat and human systems and compared. Test chemicals known to directly affect TH levels in vivo were confirmed to effectively inhibit at least one of the tested in vitro endpoints, without significant disparities between species, and the tested compounds known to not affect thyroid function, were found ineffective. Interestingly, Iodide Transport Blocker 5, a potent non-competitive iodine uptake inhibitor, exhibited effects beyond direct NIS inhibition, by impacting NIS function through ATP depletion, and also inhibited TPO and DIO1/2 enzymes, although to a lesser extent.

View Article and Find Full Text PDF

Background: An increasing aging population, accompanied by a shortage of residential aged care homes and workforce, and consumer feedback, has driven a growing interest in enabling older people to age in place through home-based care. In this context, smart home technologies for remote health monitoring have gained popularity in supporting older people to live in their own homes.

Objective: This study aims to investigate the impact of smart home monitoring on multiple outcomes, including quality of life, activities of daily living, and depressive symptoms among older people living in their own homes over a 12-month period.

View Article and Find Full Text PDF

Xylene is a high production volume chemical that is widely used as a solvent and polymer precursor, and is currently undergoing substance evaluation under Registration, Evaluation, Authorization and Restriction of Chemicals (REACH). Xylenes recently received testing decisions on one-generation reproductive toxicity (EOGRT) studies with additional developmental neurotoxicity (DNT) cohorts for each of the three isomers. Xylene presents a unique opportunity to investigate the need for additional animal DNT toxicology testing because it is a legacy industrial chemical for which a significant amount of animal and human data already exists on its toxicity profile, including central nervous system effects.

View Article and Find Full Text PDF
Article Synopsis
  • Notch is important for development and diseases, leading researchers to create inhibitors using small molecules and antibodies.* -
  • A novel nanobody was developed to inhibit Notch signaling, showing effectiveness in laboratory assays despite a low affinity for the Notch target.* -
  • By linking the nanobody to a toxin-derived membrane domain, researchers improved its potency, successfully inhibiting cancer cell proliferation similar to existing Notch blockers.*
View Article and Find Full Text PDF