In cultured human and rat cells, the lipolysis-stimulated receptor (LSR), when activated by free fatty acids (FFA), mediates the binding of apoprotein B- and apoprotein E-containing lipoproteins and their subsequent internalization and degradation. To better understand the physiological role of LSR, we developed a biochemical assay that optimizes both the activation and binding steps and, thus, allows the estimation of the number of LSR binding sites expressed in the livers of living animals. With this technique, a strong inverse correlation was found in rats between the apparent number of LSR binding sites in liver and the postprandial plasma triglyceride concentration (r = -0.
View Article and Find Full Text PDFThis paper provides further characterization of a receptor that, in cells lacking the LDL receptor (FH fibroblasts), mediates lipoprotein binding, uptake, and degradation when incubated with oleate at concentrations not exceeding albumin binding capacity. This oleate-activated receptor is genetically distinct from the LDL receptor and is hereafter referred to as the lipolysis-stimulated receptor (LSR). Its apparent affinity was higher for triglyceride-rich lipoproteins (chylomicrons, VLDL) and for lipid emulsions supplemented with recombinant apoE, than for LDL which contains solely apoB.
View Article and Find Full Text PDFAfter casein intake, serum cholesterol levels are dependent on many experimental conditions in rats. The effect of the method of casein preparation was assessed in Wistar rats pair-fed for 4 wk with three identical diets differing only by the type of casein used. Compared with dietary casein and Na caseinate, ingestion of lipid- and vitamin-free casein resulted in higher liver weights (4.
View Article and Find Full Text PDF