A comprehensive study of the angular distributions in the bottom-baryon decays Λ_{b}^{0}→Λ_{c}^{+}h^{-}(h=π,K), followed by Λ_{c}^{+}→Λh^{+} with Λ→pπ^{-} or Λ_{c}^{+}→pK_{S}^{0} decays, is performed using a data sample of proton-proton collisions corresponding to an integrated luminosity of 9 fb^{-1} collected by the LHCb experiment at center-of-mass energies of 7, 8, and 13 TeV. The decay parameters and the associated charge-parity (CP) asymmetries are measured, with no significant CP violation observed. For the first time, the Λ_{b}^{0}→Λ_{c}^{+}h^{-} decay parameters are measured.
View Article and Find Full Text PDFNanoparticle radioenhancement offers a promising strategy for augmenting radiotherapy by locally increasing radiation damage to tumor tissue. While past research has predominantly focused on nanomaterials with high atomic numbers, such as Au and HfO, recent work has revealed that their radioenhancement efficacy decreases considerably when using clinically relevant megavoltage X-rays as opposed to the orthovoltage X-rays typically employed in research settings. Here, radiocatalytically active Ti-based nanomaterials for clinical X-ray therapy settings are designed.
View Article and Find Full Text PDFA measurement of time-dependent CP violation in D^{0}→π^{+}π^{-}π^{0} decays using a pp collision data sample collected by the LHCb experiment in 2012 and from 2015 to 2018, corresponding to an integrated luminosity of 7.7 fb^{-1}, is presented. The initial flavor of each D^{0} candidate is determined from the charge of the pion produced in the D^{*}(2010)^{+}→D^{0}π^{+} decay.
View Article and Find Full Text PDF