Publications by authors named "L M Formosa"

The peptide hormone glucagon is a fundamental metabolic regulator that is also being considered as a pharmacotherapeutic option for obesity and type 2 diabetes. Despite this, we know very little regarding how glucagon exerts its pleiotropic metabolic actions. Given that the liver is a chief site of action, we performed in situ time-resolved liver phosphoproteomics to reveal glucagon signaling nodes.

View Article and Find Full Text PDF

Female carriers of a Duchenne muscular dystrophy (DMD) gene mutation manifest exercise intolerance and metabolic anomalies that may be exacerbated following menopause due to the loss of estrogen, a known regulator of skeletal muscle function and metabolism. Here, we studied the impact of estrogen depletion (via ovariectomy) on exercise tolerance and muscle mitochondrial metabolism in female mdx mice and the potential of estrogen replacement therapy (using estradiol) to protect against functional and metabolic perturbations. We also investigated the effect of estrogen depletion, and replacement, on the skeletal muscle proteome through an untargeted proteomic approach with TMT-labelling.

View Article and Find Full Text PDF

Human Tim8a and Tim8b are paralogous intermembrane space proteins of the small TIM chaperone family. Yeast small TIMs function in the trafficking of proteins to the outer and inner mitochondrial membranes. This putative import function for hTim8a and hTim8b has been challenged in human models, but their precise molecular function(s) remains undefined.

View Article and Find Full Text PDF

The structural and functional organization of the mitochondrial respiratory chain (MRC) remains intensely debated. Here, we show the co-existence of two separate MRC organizations in human cells and postmitotic tissues, C-MRC and S-MRC, defined by the preferential expression of three COX7A subunit isoforms, COX7A1/2 and SCAFI (COX7A2L). COX7A isoforms promote the functional reorganization of distinct co-existing MRC structures to prevent metabolic exhaustion and MRC deficiency.

View Article and Find Full Text PDF
Article Synopsis
  • Primary mitochondrial diseases stem from issues with oxidative phosphorylation, leading to diverse genetic and clinical manifestations.
  • Researchers discovered a link between biallelic pathogenic variants in the COX11 gene and infantile-onset mitochondrial encephalopathies in two families, highlighting its previously unknown role in human disease.
  • Functional studies confirmed that cells with mutated COX11 had lower ATP levels, which could be boosted by coenzyme Q supplementation, indicating a potential treatment avenue for affected patients.
View Article and Find Full Text PDF