Publications by authors named "L M Edens"

Proline-specific endoproteases have been successfully used in, for example, the in-situ degradation of gluten, the hydrolysis of bitter peptides, the reduction of haze during beer production, and the generation of peptides for mass spectroscopy and proteomics applications. Here we present the crystal structure of the extracellular proline-specific endoprotease from Aspergillus niger (AnPEP), a member of the S28 peptidase family with rarely observed true proline-specific endoprotease activity. Family S28 proteases have a conventional Ser-Asp-His catalytic triad, but their oxyanion-stabilizing hole shows a glutamic acid, an amino acid not previously observed in this role.

View Article and Find Full Text PDF

The geometric organization and force networks of 3D dense suspensions that exhibit both shear thinning and thickening have been examined as a function of varying strength of interparticle attractive interactions using lubrication flow discrete element simulations. Significant rearrangement of the geometric topology does not occur at either the local or global scale as these systems transition across the shear thinning and shear thickening regimes. In contrast, massive rearrangements in the balance of attractive, lubrication, and contact forces are observed with interesting behavior of network growth and competition.

View Article and Find Full Text PDF

Highly concentrated particle suspensions (also called slurries) can undergo a sharp increase in viscosity, or shear thickening, under applied stress. Understanding the fundamental features leading to such rheological change is crucial to optimize flow conditions or to design flow modifiers for slurry processing. While local changes to the particle environment under applied shear can be related to changes in viscosity, there is a broader need to connect the shear thickening transition to the fundamental organization of particle-interaction forces which lead to long-range organization.

View Article and Find Full Text PDF

How nuclear size is regulated is a fundamental cell-biological question with relevance to cancers, which often exhibit enlarged nuclei. We previously reported that conventional protein kinase C (cPKC) contributes to nuclear size reductions that occur during early development. Here we report that PKC-mediated phosphorylation of lamin B3 (LB3) contributes to this mechanism of nuclear size regulation.

View Article and Find Full Text PDF

A fundamental question in cell biology is how cell and organelle sizes are regulated. It has long been recognized that the size of the nucleus generally scales with the size of the cell, notably during embryogenesis when dramatic reductions in both cell and nuclear sizes occur. Mechanisms of nuclear size regulation are largely unknown and may be relevant to cancer where altered nuclear size is a key diagnostic and prognostic parameter.

View Article and Find Full Text PDF