Autotaxin (ATX), encoded by ENPP2, is a clinical target in pancreatic ductal adenocarcinoma (PDAC). ATX catalyzes the production of lysophosphatidic acid (LPA), an important regulator within the tumor microenvironment (TME), yet the pro-tumorigenic action of the ATX/LPA axis in PDAC remains unclear. Here, by interrogating patient samples and cell line datasets, we show that the PDAC TME, rather than cancer cells, is responsible for the majority of ENPP2 expression, and highlight a key role for cancer associated fibroblast (CAF)-derived ATX in autocrine and paracrine pro-tumorigenic signaling.
View Article and Find Full Text PDFBackground: Genetic variants associated with molecular traits that are also associated with liability to glioma can provide causal evidence for the identification and prioritisation of drug targets.
Methods: We performed comprehensive two-sample Mendelian randomisation (Wald ratio and/or IVW) and colocalisation analyses of molecular traits on glioma. Instrumentable traits (QTLs P < 5 × 10-8) were identified amongst 11 985 gene expression measures, 13 285 splicing isoforms and 10 198 protein abundance measures, derived from 15 brain regions.