Oral administration of sodium pyrithione (NaP) causes hindlimb weakness in rodents, but not in primates. Previous work using Aplysia neurons has demonstrated that NaP produces a persistent influx of Ca(2+) ions across the plasma membrane. To determine whether this also occurs in mammalian neurons and whether this could underlie the inter-species difference between rodents and primates, we have tested the effects of NaP on intracellular Ca(2+) levels ([Ca(2+)](i)) in rat and monkey motor neurons in vitro.
View Article and Find Full Text PDFPreviously, we have shown that two types of luteinizing hormone-releasing hormone (LHRH) -like neurons, "early" and "late" cells, were discernible in the forebrain of rhesus monkey fetuses by using antiserum GF-6, which cross-reacts with several forms of LHRH. The "late" cells that arose from the olfactory placode of monkey fetuses at embryonic days (E) 32-E36, are bona fide LHRH neurons. The "early" cells were found in the forebrain at E32-E34 and settled in the extrahypothalamic area.
View Article and Find Full Text PDFTo understand the mechanism of pulsatile luteinizing hormone-releasing hormone (LHRH) release, we examined whether cultured LHRH neurons exhibit spontaneous intracellular Ca(2+) ([Ca(2+)](i)) signaling. The olfactory placode and the ventral migratory pathway of LHRH neurons from rhesus monkey embryos at embryonic ages 35-37 were dissected out and cultured on glass coverslips. Two to five weeks later, cultured cells were labeled with fura-2 and examined for [Ca(2+)](i) signaling by recording changes in [Ca(2+)](i) every 10 sec for 30-175 min.
View Article and Find Full Text PDFPreviously we have shown that release of gamma-aminobutyric acid (GABA) in the stalk-median eminence (S-ME) is high in prepubertal monkeys and that a decrease in GABA release triggers the onset of puberty. However, it is still unclear how disinhibition of the luteinizing hormone releasing hormone (LHRH) neuronal system from GABA input is followed (or accompanied) by an increase in stimulatory signals, such as glutamatergic input to LHRH neurons. To clarify the temporal relationship between the reduction of the GABAergic inhibitory signal and the enhancement of the glutamatergic stimulatory signal in the control of LHRH release at the onset of puberty, we conducted two experiments using a push-pull perfusion method.
View Article and Find Full Text PDFTo investigate further the role of GABA in the onset of puberty, this study examines whether glutamic acid decarboxylase (GAD), the catalytic enzyme for GABA synthesis, is involved in the suppression of luteinizing hormone releasing hormone (LHRH) before puberty in rhesus monkeys. First, both GAD67 and GAD65 mRNAs were detectable by reverse transcription-PCR analysis in the preoptic area, medio-basal hypothalamus, posterior hypothalamic area, and hippocampus of the monkey brain. Second, effects of antisense oligodeoxynucleotides (D-oligos) for GAD67 and GAD65 mRNAs on LHRH release were examined in conscious female rhesus monkeys at the prepubertal stage using a push-pull perfusion method.
View Article and Find Full Text PDF