Recently we and other groups have shown that molecular iodine (I(2)) exhibits potent antiproliferative and apoptotic effects in mammary cancer models. In the human breast cancer cell line MCF-7, I(2) treatment generates iodine-containing lipids similar to 6-iodo-5-hydroxy-eicosatrienoic acid and the 6-iodolactone (6-IL) derivative of arachidonic acid (AA), and it significantly decreases cellular proliferation and induces caspase-dependent apoptosis. Several studies have shown that AA is a natural ligand of the peroxisome proliferator-activated receptors (PPARs), which are nuclear transcription factors thought to participate in regulating cancer cell proliferation.
View Article and Find Full Text PDFTranscription is an essential step in gene expression and its understanding has been one of the major interests in molecular and cellular biology. By precisely tuning gene expression, transcriptional regulation determines the molecular machinery for developmental plasticity, homeostasis and adaptation. In this review, we transmit the main ideas or concepts behind regulation by transcription factors and give just enough examples to sustain these main ideas, thus avoiding a classical ennumeration of facts.
View Article and Find Full Text PDFThe physiological role played by thyroid hormones (TH) in hydro-osmotic homeostasis in fish remains a controversial issue. Previous studies have shown that in Fundulus heteroclitus (killifish) hypo-osmotic stress increases liver iodothyronine deiodinase type 2 (D2) mRNA and D2 activity. In this study we identified two conserved osmotic response element (ORE) motifs in the promoter region of the killifish D2 gene (FhDio2) and examined their possible role in the transcriptional regulation of FhDio2 during hypo-osmotic stress.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
August 2007
Until recently, 3,5-diiodothyronine (3,5-T(2)) has been considered an inactive by-product of triiodothyronine (T(3)) deiodination. However, studies from several laboratories have shown that 3,5-T(2) has specific, nongenomic effects on mitochondrial oxidative capacity and respiration rate that are distinct from those due to T(3). Nevertheless, little is known about the putative genomic effects of 3,5-T(2).
View Article and Find Full Text PDFPathogenesis of the development of sepsis is highly complex and has been the object of study for many years. The inflammatory phenomena underlying septic shock are described in this review, as well as the enzymes and genes involved in the cellular activation that precedes this condition. The most important molecular aspects are discussed, ranging from the cytokines involved and their respective transduction pathways to the cellular mechanisms related to accelerated catabolism and multi-organic failure.
View Article and Find Full Text PDF