This paper presents techniques for robot-aided intraocular surgery using monocular vision in order to overcome erroneous stereo reconstruction in an intact eye. We propose a new retinal surface estimation method based on a structured-light approach. A handheld robot known as the Micron enables automatic scanning of a laser probe, creating projected beam patterns on the retinal surface.
View Article and Find Full Text PDFIn this paper we describe work towards retinal vessel cannulation using an actively stabilized handheld robot, guided by monocular vision. We employ a previously developed monocular camera based surface reconstruction method using automated laser beam scanning over the retina. We use the reconstructed plane to find a coordinate transform between the 2D image plane coordinate system and the global 3D frame.
View Article and Find Full Text PDFThis paper presents robot-aided intraocular laser surgery using a handheld robot known as Micron. The micromanipulator incorporated in Micron enables visual servoing of a laser probe, while maintaining a constant distance of the tool tip from the retinal surface. The comparative study was conducted with various control methods for evaluation of robot-aided intraocular laser surgery.
View Article and Find Full Text PDFBackground And Objective: Laser photocoagulation is a mainstay or adjuvant treatment for a variety of common retinal diseases. Automated laser photocoagulation during intraocular surgery has not yet been established. The authors introduce an automated laser photocoagulation system for intraocular surgery, based on a novel handheld instrument.
View Article and Find Full Text PDFBackground: Peeling procedures in retinal surgery require micron-scale manipulation and control of sub-tactile forces.
Methods: Hybrid position/force control of an actuated handheld microsurgical instrument is presented as a means for simultaneously improving positioning accuracy and reducing forces to prevent avoidable trauma to tissue. The system response was evaluated, and membrane-peeling trials were performed by four test subjects in both artificial and animal models.