Publications by authors named "L Llacuna"

Erythropoiesis is a tightly regulated process in which multipotential hematopoietic stem cells produce mature red blood cells. Here we show that deletion of poly(ADP-ribose) polymerase-2 (PARP-2) in mice leads to chronic anemia at steady state, despite increased erythropoietin plasma levels, a phenomenon not observed in mice lacking PARP-1. Loss of PARP-2 causes shortened lifespan of erythrocytes and impaired differentiation of erythroid progenitors.

View Article and Find Full Text PDF

Searching for selective tankyrases (TNKSs) inhibitors, a new small series of 6,8-disubstituted triazolo[4,3-b]piridazines has been synthesized and characterized biologically. Structure-based optimization of the starting hit compound NNL (3) prompted us to the discovery of 4-(2-(6-methyl-[1,2,4]triazolo[4,3-b]pyridazin-8-ylamino)ethyl)phenol (12), a low nanomolar selective TNKSs inhibitor working as NAD isostere as ascertained by crystallographic analysis. Preliminary biological data candidate this new class of derivatives as a powerful pharmacological tools in the unraveling of TNKS implications in physiopathological conditions.

View Article and Find Full Text PDF

Hematopoietic stem cells self-renew for life to guarantee the continuous supply of all blood cell lineages. Here we show that Poly(ADP-ribose) polymerase-2 (Parp-2) plays an essential role in hematopoietic stem/progenitor cells (HSPC) survival under steady-state conditions and in response to stress. Increased levels of cell death were observed in HSPC from untreated Parp-2-/- mice, but this deficit was compensated by increased rates of self-renewal, associated with impaired reconstitution of hematopoiesis upon serial bone marrow transplantation.

View Article and Find Full Text PDF

Activation of NF-κB (nuclear factor of kappa light chain gene enhancer in B cells) in response to DNA damage is considered to contribute to repair of genetic lesions, increased cell survival and cytokine release. The molecular mechanisms orchestrating this cytoplasmic event involve core components of the nuclear DNA damage response machinery, including ATM-kinase (ataxia telangiectasia mutated kinase) and PARP-1 (poly (ADP-ribose) polymerase 1). The physiological consequences of defective NF-κB activation in this context, however, remain poorly investigated.

View Article and Find Full Text PDF

Poly(ADP-ribose) polymerase-1 (PARP-1) and PARP-2 belong to a family of enzymes that, using NAD(+) as a substrate, catalyze poly(ADP-ribosyl)ation of proteins. PARP-1 and PARP-2 catalytic activity is stimulated by DNA-strand breaks targeting mainly proteins involved in chromatin structure and DNA metabolism, providing strong support for a dual role of both PARP-1 and PARP-2 in the DNA damage response as DNA damage sensors and signal transducers to downstream effectors. The DNA damage response has important consequences for genomic stability and tumour development.

View Article and Find Full Text PDF