Publications by authors named "L Liverani"

Electrospinning is a versatile and straightforward technique to produce nanofibrous mats with different morphologies. In addition, by optimizing the solution, processing, and environmental parameters, three-dimensional (3D) nanofibrous scaffolds can also be created using this method. In this work, the preparation and characterization of bioactive glass (BG) scaffolds based on the SiO-CaO sol-gel system, a biomaterial with a highly reactive surface, is reported.

View Article and Find Full Text PDF

Background: Assisted Reproductive Technologies (ARTs) have been validated in human and animal to solve reproductive problems such as infertility, aging, genetic selection/amplification and diseases. The persistent gap in ART biomedical applications lies in recapitulating the early stage of ovarian folliculogenesis, thus providing protocols to drive the large reserve of immature follicles towards the gonadotropin-dependent phase. Tissue engineering is becoming a concrete solution to potentially recapitulate ovarian structure, mostly relying on the use of autologous early follicles on natural or synthetic scaffolds.

View Article and Find Full Text PDF

Mesoporous silica nanoparticles were synthesized using a microemulsion-assisted sol-gel method, and calcium, gallium or a combination of both, were used as dopants. The influence of these metallic ions on the physicochemical properties of the nanoparticles was investigated by scanning and transmission electron microscopy, as well as N adsorption-desorption methods. The presence of calcium had a significant impact on the morphology and textural features of the nanoparticles.

View Article and Find Full Text PDF

Introduction: Total ankle arthroplasty (TAR) procedures have become more reliable and incidence is increasing. A growing number of postoperative complications can be expected and should be correctly addressed.

Presentation Of Case: A 43-year-old woman suffering from severe ankle osteoarthritis underwent TAR (Stryker's Infinity with Prophecy alignment guides, uncemented tibial component and cemented talus component).

View Article and Find Full Text PDF

In this work, composite electrospun fibers containing innovative bioactive glass nanoparticles were produced and characterized. Poly(ε-caprolactone), benign solvents, and sol-gel B- and Cu-doped bioactive glass powders were used to fabricate fibrous scaffolds. The retention of bioactive glass nanoparticles in the polymer matrix, the electrospinnability of this novel solution and the obtained electrospun composites were extensively characterized.

View Article and Find Full Text PDF