Publications by authors named "L Limousy"

The growing energy consumption and the need for a circular economy have driven considerable interest in the anaerobic digestion (AD) of organic waste, offering potential solutions through biogas and digestate production. AD processes not only have the capability to reduce greenhouse gas emissions but also contribute to the production of renewable methane. This comprehensive review aims to consolidate prior research on AD involving different feedstocks.

View Article and Find Full Text PDF

In the context of sustainable solutions, this study examines the pyrolysis process applied to corn cobs, with the aim of producing biochar and assessing its effectiveness in combating air pollution. In particular, it examines the influence of different pyrolysis temperatures on biochar properties. The results reveal a temperature-dependent trend in biochar yield, which peaks at 400 °C, accompanied by changes in elemental composition indicating increased stability and extended shelf life.

View Article and Find Full Text PDF

Heat storage technologies are essential for increasing the use of solar energy in the household sector. Their development can be achieved by designing new storage materials; one way is to impregnate a porous matrix with hygroscopic salts. In this article, the possibility of using biochar-based composite sorbents to develop promising new heat storage materials for efficient thermal storage is explored.

View Article and Find Full Text PDF

Tomato pomace was slowly pyrolyzed at 350 and 550 °C (under an N flow of 50 L/h) at a rate of 6 °C/min and a residence time of 1:30 h to produce two biochars named B350 and B550, respectively. In addition, the two biochars were chemically activated with ΚΟΗ (at a ratio of 1:10 w/v) at 800 °C to produce two new materials named BA350 and BA550. The four biochars produced were characterized physically and chemically (pH, yield, calorific value).

View Article and Find Full Text PDF

Studies on the immobilization of oxindolimine‑copper(II) or zinc(II) complexes [ML] in synthetic beidellite (BDL) clay were developed to obtain a suitable inorganic carrier capable of promoting the modified-release of metallopharmaceuticals. Previous investigations have shown that the studied metal complexes are promising antitumor agents, targeting DNA, mitochondria, and some proteins. They can bind to DNA, causing oxidative damage via formation of reactive oxygen species (ROS).

View Article and Find Full Text PDF