We review here the neuronal mechanisms that cause seizures in focal epileptic disorders and, specifically, those involving limbic structures that are known to be implicated in human mesial temporal lobe epilepsy. In both epileptic patients and animal models, the initiation of focal seizures - which are most often characterized by a low-voltage fast onset EEG pattern - is presumably dependent on the synchronous firing of GABA-releasing interneurons that, by activating post-synaptic GABA receptors, cause large increases in extracellular [K] through the activation of the co-transporter KCC2. A similar mechanism may contribute to seizure maintenance; accordingly, inhibiting KCC2 activity transforms seizure activity into a continuous pattern of short-lasting epileptiform discharges.
View Article and Find Full Text PDFEpilepsies affecting the limbic regions are common and generate seizures often resistant to pharmacological treatment. Clinical evidence demonstrates that diverse regions of the mesial portion of the temporal lobe participate in limbic seizures; these include the hippocampus, the entorhinal, perirhinal and parahippocampal regions and the piriform cortex. The network mechanisms involved in the generation of olfactory-limbic epileptiform patterns will be here examined, with particular emphasis on acute interictal and ictal epileptiform discharges obtained by treatment with pro-convulsive drugs and by high-frequency stimulations on in vitro preparations, such as brain slices and the isolated guinea pig brain.
View Article and Find Full Text PDFFront Neural Circuits
October 2022
Under physiological conditions, neuronal network synchronization leads to different oscillatory EEG patterns that are associated with specific behavioral and cognitive functions. Excessive synchronization can, however, lead to focal or generalized epileptiform activities. It is indeed well established that in both epileptic patients and animal models, focal epileptiform EEG patterns are characterized by interictal and ictal (seizure) discharges.
View Article and Find Full Text PDFHypothermia is a promising therapeutic strategy for severe vasospasm and other types of non-thrombotic cerebral ischemia, but its clinical application is limited by significant systemic side effects. We aimed to develop an intraventricular device for the controlled cooling of the cerebrospinal fluid, to produce a targeted hypothermia in the affected cerebral hemisphere with a minimal effect on systemic temperature. An intraventricular cooling device (acronym: V-COOL) was developed by in silico modelling, in vitro testing, and in vivo proof-of-concept application in healthy Wistar rats (n = 42).
View Article and Find Full Text PDF