The design of protein-metal complexes is rapidly advancing, with applications spanning catalysis, sensing, and bioremediation. We report a comprehensive investigation of METPsc1, a Miniaturized Electron Transfer Protein, in complex with cadmium. This study elucidates the impact of metal coordination on protein folding and structural dynamics across temperatures from 100 K to 300 K.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
November 2024
The design, synthesis, and characterization of a new peptidomimetic acting as a formyl peptide receptor (FPR1) antagonist (N-19004) are herein reported. The molecule has been identified with docking studies of the highly potent FPR1 antagonist UPARANT on human receptor. N-19004 recapitulates all pharmacophoric groups necessary for recognition into a minimal structure, with a crucial role of the 2,6-diamino-thiophenyl scaffold mimicking the positions of Cα atoms of Arg residues in the turned Arg-Aib-Arg segment of UPARANT.
View Article and Find Full Text PDFIn the last three decades, high-relaxivity Magnetic Resonance Imaging (MRI) contrast agents (CAs) have been intensively sought, aiming at a reduction in the clinically injected dose while maintaining the safety of the CA and obtaining the same pathological information. Thus, four new Gd(III) complexes based on modified 10-(2-hydroxypropyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (HP-DO3A) macrocyclic structure were designed and synthesized by introducing further polar and protic functional groups (amides, phosphonates, and diols) adjacent to the metal-coordinated hydroxyl group. A detailed H NMR relaxometric analysis allowed us to investigate the effect of these functional groups on the relaxivity, which showed a 20-60% increase (at 0.
View Article and Find Full Text PDFBackground: Reduction of adult hippocampal neurogenesis is an early critical event in Alzheimer's disease (AD), contributing to progressive memory loss and cognitive decline. Reduced levels of the nucleoporin 153 (Nup153), a key epigenetic regulator of NSC stemness, characterize the neural stem cells isolated from a mouse model of AD (3×Tg) (AD-NSCs) and determine their altered plasticity and gene expression.
Methods: Nup153-regulated mechanisms contributing to NSC function were investigated: (1) in cultured NSCs isolated from AD and wild type (WT) mice by proteomics; (2) in vivo by lentiviral-mediated delivery of Nup153 or GFP in the hippocampus of AD and control mice analyzing neurogenesis and cognitive function; (3) in human iPSC-derived brain organoids obtained from AD patients and control subjects as a model of neurodevelopment.