Publications by authors named "L Leon-Reina"

Portland cements (PCs) and cement blends are multiphase materials of different fineness, and quantitatively analysing their hydration pathways is very challenging. The dissolution (hydration) of the initial crystalline and amorphous phases must be determined, as well as the formation of labile (such as ettringite), reactive (such as portlandite) and amorphous (such as calcium silicate hydrate gel) components. The microstructural changes with hydration time must also be mapped out.

View Article and Find Full Text PDF

Cement hydration is a very complex set of processes. The evolution of the crystalline phases during hydration can be accurately followed by X-ray powder diffraction data evaluated by the Rietveld method. However, accurate measurements of some microstructural features, including porosity and amorphous content developments, are more challenging.

View Article and Find Full Text PDF

The fabrication of pectin-cellulose nanocrystal (CNC) biocomposites has been systematically investigated by blending both polysaccharides at different relative concentrations. Circular free-standing films with a diameter of 9 cm were prepared by simple solution of these carbohydrates in water followed by drop-casting and solvent evaporation. The addition of pectin allows to finely tune the properties of the biocomposites.

View Article and Find Full Text PDF

Herein, we exploit the well-known swelling behaviour of metal-organic frameworks (MOFs) to create a self-folding polymer film. Namely, we show that incorporating crystals of the flexible MOF MIL-88A into a polyvinylidene difluoride (PVDF) matrix affords a polymer composite film that undergoes reversible shape transformations upon exposure to polar solvents and vapours. Since the self-folding properties of this film correlate directly with the swelling properties of the MIL-88A crystals, it selectively bends to certain solvents and its degree of folding can be controlled by controlling the relative humidity.

View Article and Find Full Text PDF

This study reports 78 Rietveld quantitative phase analyses using Cu α, Mo α and synchrotron radiations. Synchrotron powder diffraction has been used to validate the most challenging analyses. From the results for three series with increasing contents of an analyte (an inorganic crystalline phase, an organic crystalline phase and a glass), it is inferred that Rietveld analyses from high-energy Mo α radiation have slightly better accuracies than those obtained from Cu α radiation.

View Article and Find Full Text PDF