Many in vitro gastrointestinal models have been developed with the hope that they will continue to improve in their similarity to the organs from which they were isolated. Intestinal organoids isolated from various species are now being used to investigate physiology and pathophysiology. In this study, intestinal stem cells were isolated from adult rat duodenum and culture conditions were optimized to promote the growth, differentiation and development of 3D organoids.
View Article and Find Full Text PDFRecently, our research group reported the identification of BMS-986104 (2) as a differentiated S1P receptor modulator. In comparison to fingolimod (1), a full agonist of S1P currently marketed for the treatment of relapse remitting multiple sclerosis (RRMS), 2 offers several potential advantages having demonstrated improved safety multiples in preclinical evaluations against undesired pulmonary and cardiovascular effects. In clinical trials, 2 was found to exhibit a pharmacokinetic half-life ( T) longer than that of 1, as well as a reduced formation of the phosphate metabolite that is required for activity against S1P.
View Article and Find Full Text PDFPhospholipidosis (PLD) in preclinical species can lead to regulatory delays thereby creating incentives to screen for PLD during drug discovery. The objective of this work was to compare, optimize, and validate in vitro PLD assays in primary mouse macrophages and hepatocyte- (HepG2, HuH7) or macrophage-derived cells lines (I.13.
View Article and Find Full Text PDFOrganic anion-transporting polypeptides (Oatp) 1a1 and 1a4 were deleted by homologous recombination, and mice were characterized for Oatp expression in liver and kidney, transport in isolated hepatocytes, in vivo disposition of substrates, and urinary metabolomic profiles. Oatp1a1 and Oatp1a4 proteins were undetected in liver, and both lines were viable and fertile. Hepatic constitutive messenger RNAs (mRNAs) for Oatp1a4, 1b2, or 2b1 were unchanged in Oatp1a1⁻/⁻ mice, whereas renal Oatp1a4 mRNA decreased approximately 50% (both sexes).
View Article and Find Full Text PDFIn the present study, NMR-based urinary metabonomic profiles resulting from dosing with widely recognized microsomal enzyme inducers were evaluated in male rats. Wistar or Sprague-Dawley rats were dosed daily by oral gavage with phenobarbital (PB; 100 mg/kg), diallyl sulfide (DAS; 500 mg/kg), the investigational compound DMP-904 (150 mg/kg), or beta-naphthoflavone (BNF; 100 mg/kg) for 4 days, and urine was collected daily for analysis. Compounds known to increase cytochrome P450 2B enzymes, including PB, DAS and DMP-904, increased the urinary excretion of gulonic and ascorbic acid in a time-dependent manner, reaching a maximum following 3-4 days of dosing.
View Article and Find Full Text PDF