Dithiolopyrrolone antibiotics, produced by several micro-organisms, are known for their strong antimicrobial and antitumor activities. Among of this micro-organisms, Saccharothrix algeriensis NRRL B-24137, a rare actinobacterium, has the ability to produce several dithiolopyrrolones derivatives depending on precursors added in the culture medium. After 10 days of strain fermentation on semi-synthetic medium supplemented with cinnamic acid and HPLC purification, biosynthesis of benzoyl-pyrrothine dithiolopyrrolone was evidenced through complete spectroscopic (UV-visible and 1H and 13C NMR) and spectrometric (electron impact mass spectrum) analyses.
View Article and Find Full Text PDFThe impact of phenological stages (vegetative, flowering and fruiting stages) on chemical composition, antioxidant, and antimicrobial activities of Tetraclinis articulata (Vahl) Mast. parts essential oils were investigated for the first time. GC and GC/MS analyses pointed to a quantitative variability of components; terpene hydrocarbons derivatives, represented by α-pinene (16.
View Article and Find Full Text PDFThe fungus Pyrenophora tritici-repentis (Died.) causes tan spot, an important leaf disease of wheat worldwide. Isolates of this pathogen have been collected and characterized into eight races on the basis of their ability to produce three different host-selective toxins.
View Article and Find Full Text PDFABSTRACT Pyrenophora tritici-repentis, causal agent of tan spot, induces necrosis and chlorosis in its wheat host. The tan spot system conforms to the toxin model and three host-specific toxins have been identified (Ptr ToxA, Ptr ToxB, and putative Ptr ToxC). Processing of a collection of isolates, obtained in the Fertile Crescent and Caucasus regions, yielded two new virulence patterns.
View Article and Find Full Text PDFABSTRACT Pyrenophora tritici-repentis causes necrosis and chlorosis in its wheat host. Susceptibility to races 2 (necrosis) and 5 (chlorosis) of the pathogen is known to be mediated by Ptr ToxA and Ptr ToxB, respectively. Sensitivity to each toxin is controlled by a single dominant and independently inherited gene.
View Article and Find Full Text PDF