Lipid droplets (LDs), highly dynamic cellular organelles specialized in lipid storage and maintenance of lipid homeostasis, contain several proteins on their surface, among which the perilipin (Plin) family stands out as the most abundant group of LD-binding proteins. They play a pivotal role in influencing the behavior and functionality of LDs, regulating lipase activity, and preserving a balance between lipid synthesis and degradation, which is crucial in the development of obesity and abnormal accumulation of fat in non-adipose tissues, causing negative adverse biological effects, such as insulin resistance, mitochondrial dysfunction, and inflammation. The expression levels of Plins are often associated with various diseases, such as hepatic steatosis and atherosclerotic plaque formation.
View Article and Find Full Text PDFShort-term unloading experienced following injury or hospitalisation induces muscle atrophy and weakness. The effects of exercise following unloading have been scarcely investigated. We investigated the functional and molecular adaptations to a resistance training (RT) programme following short-term unloading.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
January 2025
High-resolution soil moisture data is crucial in the development of hydrological applications as it provides detailed insights into the spatiotemporal variability of soil moisture. The emergence of advanced remote sensing technologies, alongside the widespread adoption of machine learning, has facilitated the creation of continental and global soil moisture products both at fine spatial (1 km) and temporal (daily) scales. Some of these products rely on several data sources as input (satellite, in situ, modelling), and therefore an evaluation of their actual spatial and temporal resolution is required.
View Article and Find Full Text PDFThe voltage-dependent anion-selective channel isoform 1 (VDAC1) is a pivotal component in cellular metabolism and apoptosis with a prominent role in many cancer types, offering a unique therapeutic intervention point. Through an -to- approach we identified a set of VA molecules (VDAC Antagonists) that selectively bind to VDAC1 and display specificity toward cancer cells. Biochemical characterization showed that VA molecules can directly interact with VDAC1 with micromolar affinity by competing with the endogenous ligand NADH for a partially shared binding site.
View Article and Find Full Text PDF