Publications by authors named "L L Petrova"

Chromosomal abnormalities of the embryo are the most common cause of first-trimester pregnancy loss. In this single-center study, we assessed the frequency and the spectrum of chromosomal abnormalities in miscarriages for each year of maternal age from 23 to 44. Cytogenetic data were obtained by conventional karyotyping of 7118 miscarriages in women with naturally conceived pregnancies.

View Article and Find Full Text PDF

bacteria is a component of normal intestinal microflora of humans and animals, but can also be found in hospital settings causing urinary tract infections and sepsis. The problem of treating such infections is complicated by multidrug-resistant isolates producing extended spectrum beta-lactamases (ESBL), and the number of ESBL-carrying strains has significantly increased recently. This study presents a detailed analysis of 12 multidrug-resistant isolates obtained from the wounds of different patients in one surgical department of a multidisciplinary hospital in Moscow, Russia, using the short- and long-read whole genome sequencing.

View Article and Find Full Text PDF
Article Synopsis
  • * Cognitive motor therapy incorporates virtual reality and biofeedback to enhance rehabilitation for these patients.
  • * The study aimed to assess how effective cognitive motor therapy is in improving upper limb function after a stroke.
View Article and Find Full Text PDF

Recent studies have discovered that aryl-substituted pyrido[2,1-a]isoquinolines have the potential to be highly active DPP IV inhibitors. In previous studies, we reported a novel synthetic approach for the construction of their sulfur-containing bioisosteric [1,4]thiazino[3,4-a]isoquinolines analogues, incorporating an additional aryl substituent. The present study aims to investigate the DPP IV inhibitory activity and cytotoxicity of the synthesized molecules by in vitro assay.

View Article and Find Full Text PDF

Background: Many bacteria are capable of reducing selenium oxyanions, primarily selenite (SeO), in most cases forming selenium(0) nanostructures. The mechanisms of these transformations may vary for different bacterial species and have so far not yet been clarified in detail. Bacteria of the genus , including ubiquitous phytostimulating rhizobacteria, are widely studied and have potential for agricultural biotechnology and bioremediation of excessively seleniferous soils, as they are able to reduce selenite ions.

View Article and Find Full Text PDF