The mechanism of activation of the alternative lengthening of telomeres (ALT) pathway of mammalian chromosome-end maintenance has been unclear. We have now discovered that co-depletion of the histone chaperones ASF1a and ASF1b in human cells induced all hallmarks of ALT in both primary and cancer cells. These included the formation of ALT-associated PML (promyelocytic leukemia) bodies (APBs), the presence of extrachromosomal telomeric DNA species, an elevated frequency of telomeric sister chromatid exchanges (t-SCE) events and intertelomeric exchange of an integrated tag.
View Article and Find Full Text PDFDNA Repair (Amst)
March 2013
A subset of human tumors ensures indefinite telomere length maintenance by activating a telomerase-independent mechanism known as Alternative Lengthening of Telomeres (ALT). Most tumor cells of ALT origin share a constellation of unique characteristics, which include large stores of extra-chromosomal telomeric material, chronic telomere dysfunction and a peculiar enrichment in chromosome ends with 5' C-rich overhangs. Here we demonstrate that acute telomere de-protection and the subsequent DNA damage signal are not sufficient to facilitate formation of 5' C-overhangs at the chromosome end.
View Article and Find Full Text PDFRecent evidence for 5'-cytosine (C)-rich overhangs at the telomeres of the nematode Caenorhabditis elegans provided the impetus to re-examine the end structure of mammalian telomeres. Two-dimensional (2D) gel electrophoresis, single telomere-length analysis (STELA), and strand-specific exonuclease assays revealed the presence of a 5'-C-rich overhang at the telomeres of human and mouse chromosomes. C-overhangs were prominent in G1/S arrested as well as terminally differentiated cells, indicating that they did not represent replication intermediates.
View Article and Find Full Text PDFThe linear nature of eukaryotic chromosomes necessitates protection of their physical ends, the telomeres, because the DNA-repair machinery can misconstrue the ends as double-stranded DNA breaks. Thus, protection is crucial for avoiding an unwarranted DNA-damage response that could have catastrophic ramifications for the integrity and stability of the linear genome. In this Commentary, we attempt to define what is currently understood by the term ;telomere protection'.
View Article and Find Full Text PDFTelomeric DNA can assemble into a nonlinear, higher-order conformation known as a G-quadruplex. Here, we demonstrate by electrospray ionization mass spectrometry that the two repeat telomeric sequence d(TGGGGTTGGGGT) from Tetrahymena thermophila gives rise to a novel parallel four-stranded G-quadruplex in the presence of sodium. The G-quadruplex directly interacts with the catalytic subunit of Tetrahymena telomerase (TERT) with micromolar affinity, and the presence of telomerase RNA is not obligatory for this interaction.
View Article and Find Full Text PDF