Publications by authors named "L L Monroe"

Conotoxins are small and highly potent neurotoxic peptides derived from the venom of marine cone snails which have captured the interest of the scientific community due to their pharmacological potential. These toxins display significant sequence and structure diversity, which results in a wide range of specificities for several different ion channels and receptors. Despite the recognized importance of these compounds, our ability to determine their binding targets and toxicities remains a significant challenge.

View Article and Find Full Text PDF

Conotoxins are toxic, disulfide-bond-rich peptides from cone snail venom that target a wide range of receptors and ion channels with multiple pathophysiological effects. Conotoxins have extraordinary potential for medical therapeutics that include cancer, microbial infections, epilepsy, autoimmune diseases, neurological conditions, and cardiovascular disorders. Despite the potential for these compounds in novel therapeutic treatment development, the process of identifying and characterizing the toxicities of conotoxins is difficult, costly, and time-consuming.

View Article and Find Full Text PDF

Severe viral respiratory diseases, such as SARS-CoV-2, are transmitted through aerosol particles produced by coughing, talking, and breathing. Medical procedures including tracheal intubation, extubation, dental work, and any procedure involving close contact with a patient's airways can increase exposure to infectious aerosol particles. This presents a significant risk for viral exposure of nearby healthcare workers during and following patient care.

View Article and Find Full Text PDF

The native structures of proteins, except for notable exceptions of intrinsically disordered proteins, in general take their most stable conformation in the physiological condition to maintain their structural framework so that their biological function can be properly carried out. Experimentally, the stability of a protein can be measured by several means, among which the pulling experiment using the atomic force microscope (AFM) stands as a unique method. AFM directly measures the resistance from unfolding, which can be quantified from the observed force-extension profile.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session7m51ttn39c8jmod9um7aiamieb6akvqr): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once