The human serotonin 5-HT2C receptor undergoes adenosineto-inosine RNA editing at five positions, generating multiple receptor isoforms with altered G-protein coupling properties. In the current study, we demonstrate that RNA editing regulates the pattern of intracellular signaling. The non-edited human 5-HT2C receptor isoform INI activates phospholipase D via the G13 heterotrimer G-protein.
View Article and Find Full Text PDFPhospholipase D activation was measured in primary cultures of rat choroid plexus epithelial cells, which endogenously express the 5-hydroxytryptamine (5-HT) 2C receptor, as well as a heterologous cell line expressing the cloned receptor. In both systems, serotonin stimulation of the 5-HT(2C) receptor activates phospholipase D in addition to phospholipase C, the traditional effector. Specific inhibitors and membrane permeable blocking peptides were used to determine which heterotrimeric G-proteins were involved.
View Article and Find Full Text PDFIn spite of abundant evidence that Wnts play essential roles in embryonic induction and patterning, little is known about the expression or activities of Wnt receptors during embryogenesis. The isolation and expression of two maternal Xenopus frizzled genes, Xfrizzled-1 and Xfrizzled-7, is described. It is also demonstrated that both can activate the Wnt/beta-catenin signaling pathway as monitored by the induction of specific target genes.
View Article and Find Full Text PDFThe co-activation of Wnt signaling and concomitant inhibition of BMP signaling has previously been implicated in vertebrate neural patterning, as evidenced by the combinatorial induction of engrailed-2 and krox-20 in Xenopus. However, screens have not previously been conducted to identify additional potential target genes. Using a PCR-based screening method we determined that XA-1, xCRISP, UVS.
View Article and Find Full Text PDF