Membrane-bound aminopeptidase P (AP-P) participates in the degradation of bradykinin in several vascular beds. We have developed an inhibitor of AP-P called apstatin (1) (N-[(2S, 3R)-3-amino-2-hydroxy-4-phenyl-butanoyl]-L-prolyl-L-prolyl-L-al aninam ide); IC50,human = 2.9 microM.
View Article and Find Full Text PDFThe synthesis and enzyme inhibition data for a series of thiadiazole urea matrix metalloproteinase (MMP) inhibitors are described. A broad screening effort was utilized to identify several thiadiazoles which were weak inhibitors of stromelysin. Optimization of the thiadiazole leads to include an alpha-amino acid side chain with variable terminal amide substituents provided a series of ureas which were moderately effective stromelysin inhibitors, with Ki's between 0.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
December 1995
Bradykinin (Bk), a potent vasoactive and cardioprotective peptide hormone, is almost completely inactivated during a single circulation through the rat lung. It has been hypothesized that membrane-bound aminopeptidase P, which can hydrolyze the Arg1-Pro2 bond of Bk, and angiotensin-converting enzyme (ACE) act in concert to degrade Bk in the pulmonary circulation. To test this hypothesis, an inhibitor of aminopeptidase P was designed and synthesized.
View Article and Find Full Text PDFThe acceptor substrate specificity of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase (GalNAc-transferase) was inferred from the amino acid sequences surrounding 196 O-glycosylation sites extracted from the National Biomedical Research Foundation Protein Database. When analyzed according to the cumulative enzyme specificity model (Poorman, R.A.
View Article and Find Full Text PDFA general scheme for obtaining a fluorescent donor/acceptor peptide substrate via solid-phase synthesis methodology is presented. The key feature of this method is the design of a glutamic acid derivative that has been modified on the carboxyl side chain with a 5-[(2'-aminoethyl)-amino]naphthelenesulfonic acid (EDANS) to create a fluorescent donor moiety that can be incorporated near the C-terminus of the peptide substrate. The corresponding fluorescent acceptor group containing a 4-[[4-(dimethylamino)phenyl]azo]benzoic acid (DABCYL) can then be attached to the resin-bound peptide at the N-terminus while all side-chain groups are still fully protected.
View Article and Find Full Text PDF