Patch foraging presents a ubiquitous decision-making process in which animals decide when to abandon a resource patch of diminishing value to pursue an alternative. We developed a virtual foraging task in which mouse behavior varied systematically with patch value. Mouse behavior could be explained by a model integrating time and rewards antagonistically, scaled by a latent patience state.
View Article and Find Full Text PDFThe ability to help and care for others fosters social cohesiveness and is vital to the physical and emotional well-being of social species, including humans. Affiliative social touch, such as allogrooming (grooming behaviour directed towards another individual), is a major type of prosocial behaviour that provides comfort to others. Affiliative touch serves to establish and strengthen social bonds between animals and can help to console distressed conspecifics.
View Article and Find Full Text PDFSocial interaction can be seen as a dynamic feedback loop that couples action, reaction, and internal cognitive processes across individual agents. A fuller understanding of the social brain requires a description of how the neural dynamics across coupled brains are linked and how they coevolve over time. We elaborate a multi-brain framework that considers social interaction as an integrated network of neural systems that dynamically shape behavior, shared cognitive states, and social relationships.
View Article and Find Full Text PDFA central question related to virtually all social decisions is how animals integrate sex-specific cues from conspecifics. Using microendoscopic calcium imaging in mice, we find that sex information is represented in the dorsal medial prefrontal cortex (dmPFC) across excitatory and inhibitory neurons. These cells form a distributed code that differentiates the sex of conspecifics and is strengthened with social experience.
View Article and Find Full Text PDF