Publications by authors named "L L Haaheim"

Non-invasive brain stimulation (NIBS) technologies, such as repetitive transcranial magnetic stimulation (rTMS), offer significant therapeutic potential for a growing number of neuropsychiatric conditions. Concurrent with the expansion of this field is the swift evolution of rTMS methodologies, including approaches to optimize stimulation site planning. Traditional targeting methods, foundational to early successes in the field and still widely employed today, include using scalp-based heuristics or integrating structural MRI co-registration to align the transcranial magnetic stimulation (TMS) coil with anatomical landmarks.

View Article and Find Full Text PDF

The emergence of a novel swine-origin pandemic influenza virus in 2009, together with the continuing circulation of highly pathogenic avian H5N1 viruses and the urgent global need to produce effective vaccines against such public health threats, has prompted a renewed interest in improving our understanding of the immune correlates of protection against influenza. As new influenza vaccine technologies, including non-HA based approaches and novel production platforms are developed and undergo clinical evaluation, it has become clear that existing immune correlates such as serum hemagglutination-inhibition antibodies may be unsuitable to estimate vaccine immunogenicity and protective efficacy of such vaccines. This International Society for Influenza and other Respiratory Virus Diseases (ISIRV) sponsored international meeting held in Miami, Florida USA on March 1-3, 2010, brought together scientists from industry, academia, and government agencies that develop and evaluate seasonal and pandemic influenza vaccines and scientists from regulatory authorities that approve them, to identify approaches to develop expanded immune correlates of protection to aid in vaccine licensure.

View Article and Find Full Text PDF

Vaccination is the best available measure of limiting the impact of the next influenza pandemic. Ideally, a candidate pandemic influenza vaccine should be easy to administer and should elicit strong mucosal and systemic immune responses. Production of influenza subunit antigen in transient plant expression systems is an alternative to overcome the bottleneck in vaccine supply during influenza pandemic.

View Article and Find Full Text PDF

Recent years' enzootic spread of highly pathogenic H5N1 virus among poultry and the many lethal zoonoses in its wake has stimulated basic and applied pandemic vaccine research. The quest for an efficacious, affordable and timely accessible pandemic vaccine has been high on the agenda. When a variant H1N1 strain of swine origin emerged as a pandemic virus, it surprised many, as this subtype is well-known to man as a seasonal virus.

View Article and Find Full Text PDF

Ideally, a candidate pandemic influenza vaccine should elicit rapid and strong cell-mediated and humoral immune responses, which are long-lasting and exhibit broad cross-reactivity against drifted strains. The present study investigated the detailed humoral and cellular immune responses in mice vaccinated intranasally or intramuscularly with inactivated influenza H5N1 (NIBRG-14) virosomal vaccine alone or formulated with Matrix-M adjuvant. The intramuscular Matrix-M-adjuvanted vaccine induced a strong immediate and long-term humoral immune response with high cross-reactivity against drifted H5N1 viruses and showed a dose-sparing potential.

View Article and Find Full Text PDF