Calcium sensor proteins play important roles by detecting changes in intracellular calcium and relaying that information onto downstream targets through protein-protein interaction. Very little is known about calcium sensors from plant species that predate land colonization and the evolution of embryophytes. Here, we examined the genome of the multicellular algae, Chara braunii, for orthologs to the evolutionarily conserved calcium sensor calmodulin (CaM) and for CaM-like (CML) proteins.
View Article and Find Full Text PDFMacrocycles and medium-sized rings are important in many scientific fields and technologies but are hard to make using current methods, especially on a large scale. Outlined herein is a strategy by which functionalized macrocycles and medium-sized rings can be prepared using cyclization/ring expansion (CRE) cascade reactions, without resorting to high dilution conditions. CRE cascade reactions are designed to operate exclusively via kinetically favorable 5-7-membered ring cyclization steps; this means that the problems typically associated with classical end-to-end macrocyclization reactions are avoided.
View Article and Find Full Text PDFBackground: Cardiovascular disease is the most common cause of death worldwide, including infection and inflammation related conditions. Multiple studies have demonstrated potential advantages of hybrid positron emission tomography combined with computed tomography (PET/CT) as an adjunct to current clinical inflammatory and infectious biochemical markers. To quantitatively analyze vascular diseases at PET/CT, robust segmentation of the aorta is necessary.
View Article and Find Full Text PDFEukaryotic cells use calcium ions (Ca2+) as second messengers, particularly in response to abiotic and biotic stresses. These signals are detected by Ca2+ sensor proteins, such as calmodulin (CaM), which regulate the downstream target proteins. Plants also possess many CaM-like proteins (CMLs), most of which remain unstudied.
View Article and Find Full Text PDF