Objectives: To characterize individuals with a diminished salivary cortisol response to mental stress, assess its association with all-cause mortality, and quantify the mediating effects of the most relevant and modifiable factors to identify potential target for prevention.
Methods: Data from MIDUS II study with a 16-year follow-up, were used to categorize 1129 participants as responders or non-responders based on the existence of increase in salivary cortisol under mental stress. LASSO-logistics analysis identified the most relevant factors.
Background: Digital health, digital medicine, and digital therapeutics integrate advanced computer technologies into healthcare, aiming to improve efficiency and patient outcomes. These technologies offer innovative solutions for the management of allergic diseases, which affect a significant proportion of the global population and are increasing in prevalence. BODY: This review examines the current progress and future potential of digital health in allergic disease management.
View Article and Find Full Text PDFBackground: Adenosine deaminase action on RNA 1 (ADAR1) can convert the adenosine in double-stranded RNA (dsRNA) molecules into inosine in a process known as A-to-I RNA editing. ADAR1 regulates gene expression output by interacting with RNA and other proteins; plays important roles in development, including growth; and is linked to innate immunity, tumors, and central nervous system (CNS) diseases.
Results: In recent years, the role of ADAR1 in tumors has been widely discussed, but its role in CNS diseases has not been reviewed.
Chemical reprogramming enables the generation of human pluripotent stem (hCiPS) cells from somatic cells using small molecules, providing a promising strategy for regenerative medicine. However, the current method is time consuming, and some cell lines from different donors are resistant to chemical induction, limiting the utility of this approach. Here, we developed a fast reprogramming system capable of generating hCiPS cells in as few as 10 days.
View Article and Find Full Text PDFA wide range of acute brain injuries, including both traumatic and non-traumatic causes, can result in elevated intracranial pressure (ICP), which in turn can cause further secondary injury to the brain, initiating a vicious cascade of propagating injury. Elevated ICP is therefore a neurological injury that requires intensive monitoring and time-sensitive interventions. Patients at high risk for developing elevated ICP undergo placement of invasive ICP monitors including external ventricular drains, intraparenchymal ICP monitors, and lumbar drains.
View Article and Find Full Text PDF