Publications by authors named "L Kroh"

The stabilization of fats and oils against oxidative lipid deterioration is still a great challenge. The synergistic interaction between phospholipids, l-ascorbate, and tocopherols have not yet been comprehensively understood. The mechanism of the synergistic antioxidant effect of 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (PE) in mixtures with l-ascorbyl palmitate (AP) and α-tocopherol (α-Toc) was investigated in an ethyl linoleate model and sunflower oil at 110 °C.

View Article and Find Full Text PDF

The lipid oxidation of fats and oils leads to volatile organic compounds, having a decisive influence on the sensory quality of foods. To understand formation and degradation pathways and to evaluate the suitability of lipid-derived aldehydes as marker substances for the oxidative status of foods, the formation of secondary and tertiary lipid oxidation compounds was investigated with gas chromatography in rapeseed oils. After 120 min, up to 65 compounds were detected.

View Article and Find Full Text PDF

Past investigations have shown high browning potential during the caramelization of sugar acids in comparison to reducing sugars. However, no approaches to elucidate the chemical mechanisms have been made. Therefore, this study aims to clarify the reasons for the high browning potential by measuring the mutarotation velocity and the elimination of CO during the heat treatment of uronic acids.

View Article and Find Full Text PDF

Lipid oxidation and the resulting volatile organic compounds are the main reasons for a loss of food quality. In addition to typical compounds, such as alkanes, aldehydes and alcohols, methyl ketones like heptan-2-one, are repeatedly described as aroma-active substances in various foods. However, it is not yet clear from which precursors methyl ketones are formed and what influence amino compounds have on the formation mechanism.

View Article and Find Full Text PDF

In the present study, a novel and reliable analytical method was developed and validated for the simultaneous determination of 1,3,5-tris(2,3-dibromopropyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (TDBP-TAZTO) and 2,4,6-tris(2,4,6-tribromophenoxy)-1,3,5-triazine (TTBP-TAZ) in environmental samples using high-performance liquid chromatography coupled to a tandem mass spectrometer. Firstly, for optimization of the liquid chromatography separation, mobile phases, oven temperatures, modifiers, and buffers were varied. Afterwards, the extraction efficiency of sediment and fish samples was tested with different techniques (pressurized liquid, solid-liquid, ultrasound-assisted, and Soxhlet extraction).

View Article and Find Full Text PDF