Publications by authors named "L Kraft"

Purpose: Current technologies to define the zone of acute peripheral nerve injury intraoperatively are limited by surgical experience, time, cumbersome electrodiagnostic equipment, and interpreter reliability. In this pilot study, we evaluated a real-time, label-free optical technique for intraoperative nerve injury imaging. We hypothesize that fluorescence lifetime imaging (FLIm) will detect a difference between the time-resolved fluorescence signatures for acute crush injuries versus uninjured segments of peripheral nerves in sheep.

View Article and Find Full Text PDF

Aligning DNA sequences retrieved from fossils or other paleontological artifacts, referred to as ancient DNA, is particularly challenging due to the short sequence length and chemical damage which creates a specific pattern of substitution (C→T and G→A) in addition to the heightened divergence between the sample and the reference genome thus exacerbating reference bias. This bias can be mitigated by aligning to pangenome graphs to incorporate documented organismic variation, but this approach still suffers from substitution patterns due to chemical damage. We introduce a novel methodology introducing the RYmer index, a variant of the commonly-used minimizer index which represents purines (A,G) and pyrimidines (C,T) as R and Y respectively.

View Article and Find Full Text PDF

Background: Insecticide resistance among invasive tephritid fruit flies poses a great risk to national food security and has the potential to disrupt quarantine and eradication programs, which rely on the efficacy of Spinosad to prevent widespread establishment in North America. During 2022 to 2023 we surveyed the extent of Spinosad resistance of two key species, oriental fruit fly Bactrocera dorsalis, and melon fly Zeugodacus cucurbitae, from 20 sites across five Hawaiian Islands including Kaua'i, O'ahu, Maui, Molokai and the "Big Island" (Hawai'i).

Results: We used topical thoracic applications of eight concentrations of Spinosad ranging from 0.

View Article and Find Full Text PDF

Ancient DNA is highly degraded, resulting in very short sequences. Reads generated with modern high-throughput sequencing machines are generally longer than ancient DNA molecules, therefore the reads often contain some portion of the sequencing adaptors. It is crucial to remove those adaptors, as they can interfere with downstream analysis.

View Article and Find Full Text PDF