Traditional tactile brain-computer interfaces (BCIs), particularly those based on steady-state somatosensory-evoked potentials, face challenges such as lower accuracy, reduced bit rates, and the need for spatially distant stimulation points. In contrast, using transient electrical stimuli offers a promising alternative for generating tactile BCI control signals: somatosensory event-related potentials (sERPs). This study aimed to optimize the performance of a novel electrotactile BCI by employing advanced feature extraction and machine learning techniques on sERP signals for the classification of users' selective tactile attention.
View Article and Find Full Text PDFThis study investigates the feasibility of a novel brain-computer interface (BCI) device designed for sensory training following stroke. The BCI system administers electrotactile stimuli to the user's forearm, mirroring classical sensory training interventions. Concurrently, selective attention tasks are employed to modulate electrophysiological brain responses (somatosensory event-related potentials-sERPs), reflecting cortical excitability in related sensorimotor areas.
View Article and Find Full Text PDFPurpose: This study investigated EEG alpha rhythm spectral power in children with Specific Language Impairment (SLI) and compared it to typically developing children to better understand the electrophysiological characteristics of this disorder. Specifically, we explored resting-state EEG, because there are studies that point to it being linked to speech and language development.
Methods: EEG recordings of 30 children diagnosed with specific language impairment and 30 typically developing children, aged 4.
Objective: A brain computer interface (BCI) allows users to control external devices using non-invasive brain recordings, such as electroencephalography (EEG). We developed and tested a novel electrotactile BCI prototype based on somatosensory event-related potentials (sERP) as control signals, paired with a tactile attention task as a control paradigm.
Approach: A novel electrotactile BCI comprises commercial EEG device, an electrical stimulator and custom software for EEG recordings, electrical stimulation control, synchronization between devices, signal processing, feature extraction, selection, and classification.
The prospective, simple randomized study assesses the effect of focused extracorporeal shock wave therapy (f-ESWT) on pain intensity and calcification size compared to the application of ultrasound physical therapy in treating patients with calcar calcanei. A total of 124 patients diagnosed with calcar calcanei were consecutively included in the study. The patients were divided into two groups: the experimental group ( = 62), which included the patients treated with f-ECWT, and the control group ( = 62), consisting of patients treated with the standard ultrasound therapy method.
View Article and Find Full Text PDF