Gp78/autocrine motility factor receptor (Gp78/AMFR) is a cancer-associated endoplasmic reticulum-localized E3 ubiquitin ligase and also the cell surface receptor for autocrine motility factor (AMF). The study objective was to determine the association between Gp78/AMFR and AMF endocytosis in thyroid cancer cells. Gp78/AMFR expression and AMF internalization were measured in differentiated thyroid cancer (DTC) and anaplastic thyroid cancer (ATC) cell lines and in freshly resected human papillary thyroid cancers (PTC) relative to benign thyroid tissue.
View Article and Find Full Text PDFBackground: Significant protease activations have been reported after traumatic brain injury (TBI). These proteases are responsible for cleavage of transmembrane proteins in neurons, glial, and endothelial cells and this results in the release of their extracellular domains (ectodomains).
Methods: Two TBI models were employed here, representing both closed head injury (CHI) and open head injury (OHI).
Background: Autocrine motility factor receptor (AMFR) has been linked to metastasis and tumorigenicity. The aim of this study was to evaluate expression and prognostic significance of AMFR in colorectal carcinoma.
Methods: AMFR expression was evaluated in 127 colon cancer specimens, 131 rectal cancer specimens, and 47 colonic and 25 rectal corresponding lymph node metastases.
Synaptic competition is widely believed to be central to the formation and function of neuronal networks, yet the underlying mechanisms are poorly described. To investigate synaptic competition in vitro, we have developed a novel two input pathway competition model using a 3-compartment microfluidic device. Axons from cultured rat cortical neurons from two different lateral compartments (inputs) innervate a common neuronal population in a separate central compartment.
View Article and Find Full Text PDFSecretory trafficking through the Golgi complex is critical for neuronal development, function, and stress response. Altered secretion is associated with the pathogenesis of various neurological diseases. We found that c-Jun amino-terminal kinase 3 (JNK3) inhibited secretory trafficking by promoting the depletion of phosphatidylinositol 4-phosphate (PI4P) in the Golgi complex of COS7 cells and primary rat neurons.
View Article and Find Full Text PDF