Publications by authors named "L Kocarev"

With the ever increasing interconnectedness among countries and industries, globalization has empowered economies and promoted international trade, capital flow and labor mobility, leading to improved products and services. However, the growing interdependence has also propelled an inherent reliance on joint cooperation which has considerably influenced the complexity of global value chains (GVCs). This plays a significant role in policy decisions, raising questions about trade risks that originate from such interdependence.

View Article and Find Full Text PDF

The Ornstein-Uhlenbeck process is interpreted as Brownian motion in a harmonic potential. This Gaussian Markov process has a bounded variance and admits a stationary probability distribution, in contrast to the standard Brownian motion. It also tends to a drift towards its mean function, and such a process is called mean reverting.

View Article and Find Full Text PDF

Despite the molecular evidence that a nearly linear steady-state current-voltage relationship in mammalian astrocytes reflects a total current resulting from more than one differentially regulated K conductance, detailed ordinary differential equation (ODE) models of membrane voltage V are still lacking. Various experimental results reporting altered rectification of the major Kir currents in glia, dominated by Kir4.1, have motivated us to develop a detailed model of V dynamics incorporating the weaker potassium K2P-TREK1 current in addition to Kir4.

View Article and Find Full Text PDF

We introduce a refined way to diffusely explore complex networks with stochastic resetting where the resetting site is derived from node centrality measures. This approach differs from previous ones, since it not only allows the random walker with a certain probability to jump from the current node to a deliberately chosen resetting node, rather it enables the walker to jump to the node that can reach all other nodes faster. Following this strategy, we consider the resetting site to be the geometric center, the node that minimizes the average travel time to all the other nodes.

View Article and Find Full Text PDF

We introduce non-Markovian SIR epidemic spreading model inspired by the characteristics of the COVID-19, by considering discrete- and continuous-time versions. The distributions of infection intensity and recovery period may take an arbitrary form. By taking corresponding choice of these functions, it is shown that the model reduces to the classical Markovian case.

View Article and Find Full Text PDF