Publications by authors named "L Kloetzer"

Muconic acid is a six-carbon dicarboxylic acid with conjugated double bonds that finds extensive use in the food (additive), chemical (production of adipic acid, monomer for functional resins and bio-plastics), and pharmaceutical sectors. The biosynthesis of muconic acid has been the subject of recent industrial and scientific attention. However, because of its low concentration in aqueous solutions and high purity requirement, downstream separation presents a significant problem.

View Article and Find Full Text PDF

Fumaric, malic and succinic acids have been selectively separated by facilitated pertraction with Amberlite LA-2, using n-heptane as liquid membrane. The feed phase consisted on viscous aqueous solution with similar mixture of carboxylic acids and viscosity as those of Rhizopus oryzae fermentation broth. Due to the differences between the acidities and molecule size of these acids, it is possible to selectively recover fumaric acid from the initial solution.

View Article and Find Full Text PDF

Folic acid (vitamin B9) is an essential micronutrient for human health. It can be obtained using different biological pathways as a competitive option for chemical synthesis, but the price of its separation is the key obstacle preventing the implementation of biological methods on a broad scale. Published studies have confirmed that ionic liquids can be used to separate organic compounds.

View Article and Find Full Text PDF

Ionic liquids (ILs) are considered a green viable organic solvent substitute for use in the extraction and purification of biosynthetic products (derived from biomass-solid/liquid extraction, or obtained through fermentation-liquid/liquid extraction). In this review, we analyzed the ionic liquids (greener alternative for volatile organic media in chemical separation processes) as solvents for extraction (physical and reactive) and pertraction (extraction and transport through liquid membranes) in the downstream part of organic acids production, focusing on current advances and future trends of ILs in the fields of promoting environmentally friendly products separation.

View Article and Find Full Text PDF

Fumaric, malic, and succinic acids have been selectively separated from their mixture obtained by Rhizopus oryzae fermentation using reactive extraction with Amberlite LA-2 dissolved in three solvents with different dielectric constants (n-heptane, n-butyl acetate, and dichloromethane). This technique allows recovering preferentially fumaric acid from the mixture, the raffinate containing only malic and succinic acids. The extractant concentration and organic phase polarity control the efficiency and selectivity of acids extraction.

View Article and Find Full Text PDF