Objective: The aim of this study was the development of a novel in-vitro method to evaluate the intraoral release of wear particles with a diameter< 1 µm from dental restorative materials.
Methods: Test fixtures for a dual-axis chewing simulator (CS-4.8, SD Mechatronik, Feldkirchen-Westerham, Germany), consisting of three components to mount the specimens and a solvent (distilled water) as well as a zirconia antagonist to transfer the masticatory forces onto the specimen was developed.
Fused filament fabrication (FFF) represents a straightforward additive manufacturing technique applied in the medical sector for personalized patient treatment. However, frequently processed biopolymers lack sufficient thermal stability to be used as auxiliary devices such as surgical guides. The aim of this study was to evaluate the dimensional accuracy of experimental biocopolyester blends with improved thermal characteristics after printing, annealing and sterilization.
View Article and Find Full Text PDFObjective: To investigate the tensile and flexural strength of poured, subtractive, and additive manufactured denture base methacrylates bonded to soft and hard relining materials after hydrothermal cycling and microwave irradiation.
Methods: This study included a conventional (CB), subtractive (SB), and additive (AB) base material as well as a soft (SCR) and hard (HCR) chairside and one hard laboratory-side (HLR) relining material. Reference bodies of the base materials and bonded specimens to the relining materials were produced with a rectangular cross-section.