Functional materials feature hierarchical microstructures that define their unique set of properties. The prediction and tailoring of these require a multiscale knowledge of the mechanistic interaction of microstructure and property. An important material in this respect is biodegradable magnesium alloys used for implant applications.
View Article and Find Full Text PDFSelf-assembled quantum dots (QDs) based on III-V semiconductors have excellent properties for applications in quantum optics. However, the presence of a 2D wetting layer (WL) which forms during the Stranski-Krastanov growth of QDs can limit their performance. Here, we investigate WL formation during QD growth by the droplet epitaxy technique.
View Article and Find Full Text PDFCarbonated serpentinites (listvenites) in the Samail Ophiolite, Oman, record mineralization of 1-2 Gt of CO, but the mechanisms providing permeability for continued reactive fluid flow are unclear. Based on samples of the Oman Drilling Project, here we show that listvenites with a penetrative foliation have abundant microstructures indicating that the carbonation reaction occurred during deformation. Folded magnesite veins mark the onset of carbonation, followed by deformation during carbonate growth.
View Article and Find Full Text PDFThe interplay of Dirac physics and induced superconductivity at the interface of a 3D topological insulator (TI) with an s-wave superconductor (S) provides a new platform for topologically protected quantum computation based on elusive Majorana modes. To employ such S-TI hybrid devices in future topological quantum computation architectures, a process is required that allows for device fabrication under ultrahigh vacuum conditions. Here, we report on the selective area growth of (Bi,Sb)Te TI thin films and stencil lithography of superconductive Nb for a full in situ fabrication of S-TI hybrid devices via molecular-beam epitaxy.
View Article and Find Full Text PDF