This study presents an innovative approach to improve implant biointegration and reduce implant-associated infections using porous poly(vinyl formal) nanocomposite matrices incorporated with gold nanoparticles and antimicrobial/anticancer drugs for plastic surgery applications. The porous matrices were characterized using physicochemical techniques and in vitro biochemical assays. The results demonstrated the biocompatibility of PVF nanocomposites and their potential for functionalization with various bioactive molecules and drugs, thereby enhancing their therapeutic efficacy.
View Article and Find Full Text PDFIn this work, a new material for in vitro plant rooting based on highly dispersed polyacrylamide hydrogel (PAAG) enriched with amber powder was synthesized and investigated. PAAG was synthesized by homophase radical polymerization with ground amber addition. Fourier transform infrared spectroscopy (FTIR) and rheological studies were used to characterize the materials.
View Article and Find Full Text PDFThe effects of acid activation of Laponite RD (Lap) on the structure and properties of activated Lap nanoparticles (aLap) and the properties of polyNIPAA hydrogels physically cross-linked by aLap have been studied. The acid activation of Lap by the sulfuric acid was done using the concentration of sulfuric acid within the interval = 0.525-14.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
October 2021
The development of novel hemostatic agents is related to the fact that severe blood loss due to hemorrhage continues to be the leading cause of preventable death of patients with military trauma and the second leading cause of death of civilian patients with injuries. Herein we assessed the hemostatic properties of porous sponges based on biocompatible hydrophilic polymer, poly(vinyl formal) (PVF), which meets the main requirements for the development of hemostatic materials. A series of composite hemostatic materials based on PVF sponges with different porosities and fillers were synthesized by acetalization of poly(vinyl alcohol) with formaldehyde.
View Article and Find Full Text PDF